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ABSTRACT: A numerical scheme based on uniform Haar wavelets is used to solve the nonhomogeneous 

Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the 

nonhomogeneous Burgers equation. The Haar wavelet preliminaries and function approximation are explained in 

brief. We have solved nonhomogeneous Burgers equation with two initial conditions, namely, linear and periodic 

initial condition and are presented as two examples. The Haar wavelet solution of these two examples are 

compared with exact solution and finite difference method solution. 
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I. INTRODUCTION 
 The Haar wavelet is the principal known wavelet and was proposed in 1909 by Alfred Haar. The Haar 

wavelet is likewise the least complex conceivable wavelet. Over the recent decades, wavelets by and large have 

picked up a respectable status because of their applications in different disciplines and in that capacity have 

numerous examples of overcoming adversity. Prominent effects of their studies are in the fields of signal and 

image processing, numerical analysis, differential and integral equations, tomography, and so on. A standout 

amongst the best utilizations of wavelets has been in image processing. The FBI has built up a wavelet based 

algorithm for fingerprint compression. Wavelets have the capability to designate functions at different levels of 

resolution, which permits building up a chain of approximate solutions of equations. Compactly supported 

wavelets are localized in space, wherein solutions can be refined in regions of sharp variations/transients without 

going for new grid generation, which is the basic methodology in established numerical schemes. Sumana and 

Achala [1] have given a brief report on Haar wavelets.  

The proposed technique plans to cover a more extensive range of problems, by applying it to verifiably 

essential and an extremely helpful class of initial boundary value problems, thereby enhancing its applicability. 

Chen and Hsiao [2] have effectively used Haar wavelets in their work on optimization theory, control theory, stiff 

differential equations, and so on, wherein the method is demonstrated convincingly. To exhibit the efficiency and 

effectiveness of the method, the celebrated non-homogeneous Burgers equations are analyzed for their solutions.  

The nonhomogeneous Burgers equation is given by,  

 

2

2
= ( , ),0 < <1, > 0,

u u u
u F x t x t

t x x


  
 

    

(1) 

where   is the fluid viscosity and ( , )F x t  is the nonhomogeneous term.  

 Nonhomogeneous Burgers equation was first derived from the hydrodynamics equation and used in the 

laser generation of sound. It was also applied to other physical phenomena such as wind forcing the buildup of 

water waves, electrohydrodyanamic field in plasma physics, and design of feedback control. Karabutov et al. [3] 

obtained the analytical solution of equation (1) with ( , ) = sin( ), > 0F x t A x A . Ding et al. [4] studied the 

solution of (1) with ( , ) = , > 0F x t kx k . Srinivasa Rao [5] obtained large time asymptotic for solutions of 

equation (1) with ( , ) = , > 0F x t kx k . Recently Srinivasa Rao [6] represented the solutions of equation (1) 

with 
2( , ) = / (2 1) , > 0, > 0F x t kx t k  . More recently, Sarboland [7] obtained the solution of equation 

(1) for different ( , )F x t  by using direct and indirect multiquadratic quasi interpolation schemes.  

 In the recent years, Haar wavelets have been widely used to solve PDEs. Lepik [8] applied Haar wavelets 

to solve evolution equations. Shi et. al. [9] solved wave equation using Haar wavelets. Ram Jiwari [10] used Haar 

wavelets to solve Burgers equation. Hariharan et. al. [11, 12, 13, 14, 15] applied Haar wavelets to solve 

Cahn-Allen Equation, Fisher’s equation, FitzHugh-Nagumo equation, Klein-Gordon equation, Sine-Gordon 

equation and some nonlinear parabolic equations. Dhawan et. al. [16] solved heat equation using Haar wavelets. 
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Celik [17] used Haar wavelets to solve generalized Burgers-Huxley equation. Bujurke et. al. [18] applied 

wavelet-multigrid method to solve elliptic partial differential equations.  

An efficient and novel numerical scheme based on uniform Haar wavelets [19] is used to solve the 

nonhomogeneous Burgers equation. The quasilinearization technique [20] is used to conveniently handle the 

nonlinear terms in the nonhomogeneous Burgers equation. The paper is organized as follows. The Haar wavelet 

preliminaries, function approximation and the method of solution are presented in Section 2. The numerical 

examples and discussions are presented in Section 3. The conclusions drawn are presented in Section 4. 

 

II. HAAR WAVELETS 

 Haar wavelet family for [0,1]x  is defined [19] as follows 
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2 3
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0 elsewhere
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where  
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Here = 2 , = 0,1, ,nm n J  indicates the level of the wavelet; = 0,1, , 1k m  is the 

translation parameter. J  is the maximum level of resolution. The index i  in equation (1) is calculated by the 

formula = 1i m k  . In the case of minimum values =1, = 0m k  we have = 2i . The maximum value of 

i  is 
1= 2 = 2Ji M 
. For = 1i , 1( )h x  is assumed to be the scaling function which is defined as follows. 
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We require the following integrals in order to solve second order partial differential equations. 
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(6)  

Any function ( )y x  which is square integrable on (0,1)  can be expressed in terms of Haar wavelets as follows.  

 =1

( ) = ( ) ( ).i

i

y x a i h x


   (7) 

Here, the expansion of ( )y x  is an infinite series. If ( )y x  is approximated as piecewise constant in each 

sub-area, then it will be terminated at finite terms, that is,  

 

2

=1

( ) = ( ) ( ),
M

i

i

y x a i h x   (8) 

where the wavelet coefficients ( ), =1,2, ,2a i i M  are to be determined. 
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III. METHOD OF SOLUTION 
 Consider an initial boundary value problem (IBVP) for the nonhomogeneous Burgers equation (1) with 

the initial and boundary conditions  

 
( ,0) = ( ),0 1,u x f x x   (9) 

 

1

2

(0, ) = ( )
0.

(1, ) = ( )

u t g t
t

u t g t


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
 (10) 

Let us divide the interval [0, ]T  into N  equal parts of length = /t T N  and denote 

= ( 1) , =1,2, ,st s t s N   . We assume a Haar wavelet solution for equation (1) in the form  

 

2

=1

( , ) = ( ) ( ),
M

''

s i

i

u x t a i h x  (11) 

where the dot and prime denote differentiation with respect to t  and x  respectively, the row vector sa  is 

constant in the subinterval  1,s st t t  .  

Integrating equation (11) with respect to t  in the limits [ , ]st t , integrating the resultant equation with respect to 

x  in the limits [0, ]x , again integrating the resultant equation with respect to x  in the limits [0, ]x , and 

differentiating the resultant equation with respect to t , we obtain the following equations respectively.  
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Using the boundary conditions (10), we have  
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Putting = 1x  in equations (14) and (15) and using the conditions in (16), we obtain  
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The wavelet collocation points are defined as 
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Substituting equations (16) - (18) in equations (12) - (15) and taking lx x , 1st t  , we get  

 

2

1

=1

( , ) = ( ) ( ) ( , ),
M

'' ''

l s s i l l s

i

u x t t a i h x u x t       (20) 

      

 
2

1 2 1 1 1 2 1

=1

( , ) = ( ) ( ) (1) ( , ) ( ) ( ) ( ) ( ),
M

l s s i l i l s s s s s

i

u x t t a i p x q u x t g t g t g t g t  
       

 

(21) 
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Using the quasilinearization technique [20] to handle the nonlinearity in equation (1), we have the following 

scheme  

 
1 1 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , ) = ( , )

( , ) ( , ), = 0,1,2,

''

s s s s s s l s

s s

u x t u x t u x t u x t u x t u x t F x t

u x t u x t s

   
   






         

(24) 

which leads us from the time layer st  to 1st  .  

Taking the collocation points lx x  in equation (24) and using equations (20) - (23), we get  
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 The wavelet coefficients ( )sa i , =1,2, ,2i M  can be successively calculated from equation (25). 

This process is started with the initial condition (9). These coefficients are then substituted in equations (20)-(22) 

to obtain the approximate solutions at different time levels. 

 

IV. NUMERICAL EXAMPLES AND DISCUSSION 
 In this section, two examples are considered to check the efficiency and accuracy of the Haar wavelet 

collocation method (HWCM). Cubic spline interpolation is used to find the solution at the specified points. The 

entire computational work has been done with the help of MATLAB software.  

 

Example 1:  

 

*
*2* * *

* * *

= , 1 < < 1, > 0,
(2 1)

( ,0) = , 1 1,

( 1, ) = , (1, ) = , 0,
2 1 2 1

t x x x

x
u uu u x t

t

u x x x

A A
u t u t t

t t








 

  


  

  
 

                      (28) 

 where 
2=A      and , > 0   are constants.  

 

Srinivasa Rao [6] showed that the solution of equation (28) for = 1  and >   is given by  

 

*
*( , ) = .

2 1

Ax
u x t

t 
                                         (29) 

Let us change the variable * = 2 1x x  . Now we get the problem,  
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 (30) 

and the exact solution becomes  

 

(2 1)
( , ) = .

2 1

A x
u x t

t



  

 (31) 

 HWCM solutions are obtained for = 5 , = 2 , = 1  and = 0.2,0.4,0.6,0.8,1,2,3,4,t  

5,6,8,10,11,13,15  with = 0.001t , = 32M . The results are compared with the exact solution and are 

presented in Tables 1-5. Figure 1 represents the HWCM solution for = 5 , = 2  and = 1  at different 

times t  with = 0.001t . Figure 2 is the 3D representation of the HWCM solution for = 5 , = 2  and 

= 1 . In order to measure the accuracy of the solutions obtained by HWCM, we define the error function as  

 

1
( ) = ( , ) ( , )

2
s s ex st u x t u x t

M
 

 

 (32) 

where ( , )ex su x t  is the exact solution (31) at = st t . The 2L  and L  error norms are calculated for = 5 , 

= 2  and = 1  at different times t  with = 0.001t , = 64M  and are presented in Table 9. We 

observe that the error values are negligibly small which indicate that the Haar wavelet solution is very close to the 

exact solution.  

 Figures 3-6 represent the physical behaviour of the HWCM solution for = 5 , = 2  and 

= 0.0001  at times = 0.3,0.5,0.8,1t  with = 0.001t .  

 

Example 2:  
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(2 1)

( ,0) = sin( ),0 1,
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t x xx
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 
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 (33) 

 The HWCM solutions are obtained for = 1 , =1 , = 1  and = 0.1,0.2,0.3,0.4,0.6,0.8,t  

1,2,3  with = 0.001t , = 32M . The results are compared with the finite difference method (FDM) 

solution and are presented in Tables 6-8. Figure 7 represents the HWCM solution for = 1 , =1  and = 1  

at different times t  with = 0.001t . Figure 8 is the 3D representation of the HWCM solution for = 1 , 

=1  and = 1 . Figures 9-10 represents the physical behaviour of the HWCM solution for = 5 , = 2  

and = 0.19  at times = 0.04,0.05t  with = 0.0001t . 

 

Table 1: Comparison of HWCM solution and exact solution of Example 1 for = 5 , = 2 , = 1  and 

= 0.2,0.4,0.6t  at different x   

 
  x   

 = 0.2t    = 0.4t    = 0.6t   

 HWCM   Exact   HWCM   Exact   HWCM   Exact  

0.1   -2.2226907   -2.2222222   -1.5386331   -1.5384615   -1.1765418   -1.1764706  

0.2   -1.6672239   -1.6666667   -1.1540637   -1.1538462   -0.8824450   -0.8823529  

0.3   -1.1115603   -1.1111111   -0.7694144   -0.7692308   -0.5883141   -0.5882353  

0.4   -0.5557999   -0.5555556   -0.3847181   -0.3846154   -0.2941621   -0.2941176  

0.5   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000  

0.6   0.5557999   0.5555556   0.3847181   0.3846154   0.2941621   0.2941176  

0.7   1.1115603   1.1111111   0.7694144   0.7692308   0.5883141   0.5882353  

0.8   1.6672239   1.6666667   1.1540637   1.1538462   0.8824450   0.8823529  

0.9   2.2226907   2.2222222   1.5386331   1.5384615   1.1765418   1.1764706  
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 Table 2: Comparison of HWCM solution and exact solution of Example 1 for = 5 , = 2 , = 1  and 

= 0.8,1,2t  at different x   

  x   
 = 0.8t    = 1t    = 2t   

 HWCM   Exact   HWCM   Exact   HWCM   Exact  

0.1   -0.9524159   -0.9523810   -0.8000195   -0.8000000   -0.4444474   -0.4444444  

0.2   -0.7143311   -0.7142857   -0.6000255   -0.6000000   -0.3333373   -0.3333333  

0.3   -0.4762296   -0.4761905   -0.4000220   -0.4000000   -0.2222256   -0.2222222  

0.4   -0.2381173   -0.2380952   -0.2000125   -0.2000000   -0.1111130   -0.1111111  

0.5   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000  

0.6   0.2381173   0.2380952   0.2000125   0.2000000   0.1111130   0.1111111  

0.7   0.4762296   0.4761905   0.4000220   0.4000000   0.2222256   0.2222222  

0.8   0.7143311   0.7142857   0.6000255   0.6000000   0.3333373   0.3333333  

0.9   0.9524159   0.9523810   0.8000195   0.8000000   0.4444474   0.4444444  

 

 

Table 3: Comparison of HWCM solution and exact solution of Example 1 for = 5 , = 2 , = 1  and 

= 3,4,5t  at different x   

  x   
 = 3t    = 4t    = 5t   

 HWCM   Exact   HWCM   Exact   HWCM   Exact  

0.1   -0.3076933   -0.3076923   -0.2352945   -0.2352941   -0.1904764   -0.1904762  

0.2   -0.2307705   -0.2307692   -0.1764711   -0.1764706   -0.1428574   -0.1428571  

0.3   -0.1538472   -0.1538462   -0.1176475   -0.1176471   -0.0952383   -0.0952381  

0.4   -0.0769237   -0.0769231   -0.0588238   -0.0588235   -0.0476192   -0.0476190  

0.5   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000  

0.6   0.0769237   0.0769231   0.0588238   0.0588235   0.0476192   0.0476190  

0.7   0.1538472   0.1538462   0.1176475   0.1176471   0.0952383   0.0952381  

0.8   0.2307705   0.2307692   0.1764711   0.1764706   0.1428574   0.1428571  

0.9   0.3076933   0.3076923   0.2352945   0.2352941   0.1904764   0.1904762  

 

 

Table 4: Comparison of HWCM solution and exact solution of Example 1 for = 5 , = 2 , = 1  and 

= 6,8,10t  at different x   

  x   
 = 6t    = 8t    = 10t   

 HWCM   Exact   HWCM   Exact   HWCM   Exact  

0.1   -0.1600001   -0.1600000   -0.1212122   -0.1212121   -0.0975610   -0.0975610  

0.2   -0.1200002   -0.1200000   -0.0909092   -0.0909091   -0.0731708   -0.0731707  

0.3   -0.0800001   -0.0800000   -0.0606061   -0.0606061   -0.0487805   -0.0487805  

0.4   -0.0400001   -0.0400000   -0.0303031   -0.0303030   -0.0243903   -0.0243902  

0.5   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000  

0.6   0.0400001   0.0400000   0.0303031   0.0303030   0.0243903   0.0243902  

0.7   0.0800001   0.0800000   0.0606061   0.0606061   0.0487805   0.0487805  

0.8   0.1200002   0.1200000   0.0909092   0.0909091   0.0731708   0.0731707  

0.9   0.1600001   0.1600000   0.1212122   0.1212121   0.0975610   0.0975610  

 

 

Table 5: Comparison of HWCM solution and exact solution of Example 1 for = 5 , = 2 , = 1  and 

=11,13,15t  at different x   

 x  
 = 11t    = 13t    = 15t   

 HWCM   Exact   HWCM   Exact   HWCM   Exact  

0.1   -0.0888889   -0.0888889   -0.0754717   -0.0754717   -0.0655738   -0.0655738  

0.2   -0.0666667   -0.0666667   -0.0566038   -0.0566038   -0.0491803   -0.0491803  

0.3   -0.0444445   -0.0444444   -0.0377359   -0.0377358   -0.0327869   -0.0327869  

0.4   -0.0222222   -0.0222222   -0.0188679   -0.0188679   -0.0163934   -0.0163934  

0.5   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000  

0.6   0.0222222   0.0222222   0.0188679   0.0188679   0.0163934   0.0163934  

0.7   0.0444445   0.0444444   0.0377359   0.0377358   0.0327869   0.0327869  

0.8   0.0666667   0.0666667   0.0566038   0.0566038   0.0491803   0.0491803  

0.9   0.0888889   0.0888889   0.0754717   0.0754717   0.0655738   0.0655738  
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Table 6: Comparison of HWCM solution and FDM solution of Example 2 for = 1 , =1 , = 1  and 

= 0.1,0.2,0.3t  at different x   

  x   
 = 0.1t    = 0.2t    = 0.3t   

 HWCM   FDM   HWCM   FDM   HWCM   FDM  

0.1   0.1170714   0.1170871   0.0510760   0.0510736   0.0240430   0.0240260  

0.2   0.2246753   0.2247074   0.0978195   0.0978154   0.0460640   0.0460317  

0.3   0.3136929   0.3137420   0.1361537   0.1361489   0.0641715   0.0641271  

0.4   0.3758052   0.3758696   0.1625226   0.1625181   0.0767305   0.0766781  

0.5   0.4041206   0.4041959   0.1741699   0.1741664   0.0824773   0.0824222  

0.6   0.3939934   0.3940719   0.1694115   0.1694094   0.0806166   0.0805641  

0.7   0.3439417   0.3440133   0.1478681   0.1478670   0.0708868   0.0708420  

0.8   0.2564392   0.2564938   0.1105991   0.1105988   0.0535837   0.0535511  

0.9   0.1382517   0.1382812   0.0600829   0.0600829   0.0295319   0.0295148  

 

 

Table 7: Comparison of HWCM solution and FDM solution of Example 2 for = 1 , =1 , = 1  and 

= 0.4,0.6,0.8t  at different x   

  x   
 = 0.4t    = 0.6t    = 0.8t   

 HWCM   FDM   HWCM   FDM   HWCM   FDM  

0.1   0.0127042   0.0126795   0.0052822   0.0052525   0.0031833   0.0031526  

0.2   0.0243892   0.0243423   0.0101866   0.0101301   0.0061527   0.0060943  

0.3   0.0340953   0.0340307   0.0143488   0.0142710   0.0086988   0.0086185  

0.4   0.0409781   0.0409020   0.0174309   0.0173393   0.0106218   0.0105272  

0.5   0.0443575   0.0442773   0.0191324   0.0190360   0.0117351   0.0116357  

0.6   0.0437566   0.0436801   0.0192001   0.0191083   0.0118697   0.0117750  

0.7   0.0389261   0.0388609   0.0174340   0.0173559   0.0108768   0.0107962  

0.8   0.0298516   0.0298041   0.0136921   0.0136353   0.0086307   0.0085721  

0.9   0.0167423   0.0167173   0.0078902   0.0078603   0.0050302   0.0049994  

 

 

Table 8: Comparison of HWCM solution and FDM solution of Example 2 for = 1 , =1 , = 1  and 

=1,2,3t  at different x   

  x   
 = 1t    = 2t    = 3t   

  HWCM   FDM   HWCM   FDM   HWCM   FDM  

0.1   0.0022514   0.0022205   0.0007622   0.0007312   0.0003926   0.0003616  

0.2   0.0043549   0.0042962   0.0014752   0.0014162   0.0007596   0.0007006  

0.3   0.0061652   0.0060843   0.0020905   0.0020094   0.0010758   0.0009946  

0.4   0.0075418   0.0074467   0.0025611   0.0024657   0.0013171   0.0012216  

0.5   0.0083518   0.0082517   0.0028416   0.0027413   0.0014601   0.0013597  

0.6   0.0084713   0.0083761   0.0028893   0.0027939   0.0014833   0.0013878  

0.7   0.0077880   0.0077070   0.0026642   0.0025830   0.0013664   0.0012852  

0.8   0.0062026   0.0061437   0.0021294   0.0020704   0.0010912   0.0010321  

0.9   0.0036299   0.0035989   0.0012514   0.0012203   0.0006407   0.0006097  

 

 

Table 9: 2L  and L error values of Example 1 for = 5 , = 2  and = 1  at different times t  

t    2L    L    t    2L    L   

0.2   2.49E-05   4.37E-06   6   7.63E-09   1.33E-09  

0.4   9.74E-06   1.70E-06   7   4.87E-09   8.48E-10  

0.5   6.22E-06   1.08E-06   8   3.29E-09   5.73E-10  

0.6   4.12E-06   7.19E-07   9   2.33E-09   4.06E-10  

0.8   2.04E-06   3.55E-07   10   1.71E-09   2.97E-10  

1  1.14E-06   1.99E-07   11   1.29E-09   2.24E-10  

2  1.76E-07   3.06E-08   12   9.96E-10   1.74E-10  

3  3.26E-07   6.95E-08   13   7.86E-10   1.37E-10  

4  1.06E-07   2.26E-08   14   6.31E-10   1.10E-10  

5  1.30E-08   2.26E-09   15   5.14E-10   8.96E-11  
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Figure 1: HWCM solution of Example 1 for = 5 , 

= 2  and = 1  at different times t  with 

= 0.001t  

 
Figure 2: 3D representation of the HWCM solution of 

Example 1 for = 5 , = 2  and = 1  

 

 

Figure 3: HWCM solution of Example 1 for = 5 , 

= 2  and = 0.0001  at = 0.3t  with 

= 0.001t  

 

Figure 4: HWCM solution of Example 1 for = 5 , 

= 2  and = 0.0001  at = 0.5t  with 

= 0.001t  

 

 

Figure 5: HWCM solution of Example 1 for = 5 , 

= 2 and = 0.0001  at = 0.8t  with 

= 0.001t  

 

Figure 6: HWCM solution of Example 1 for = 5 , 

= 2  and = 0.0001  at = 1t  with 

= 0.001t  
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Figure 7: HWCM solution of Example 2 for = 1 , 

=1  and = 1  at different times t  with 

= 0.001t  

 
Figure 8: 3D representation of the HWCM solution of 

Example 2 for = 1 , =1  and = 1  

   

 

Figure 9: HWCM solution of Example 2 for = 1 , 

=1  and = 0.19  at = 0.04t  with 

= 0.001t  

 

Figure 10: HWCM solution of Example 2 for = 1 , 

=1  and = 0.19  at = 0.05t  with 

= 0.001t  

 

V. CONCLUSION 
 We have solved the non-homogeneous Burgers equation by Haar wavelet collocation method. The 

solutions obtained are in good agreement with the exact solution and the finite difference method solution. We 

observe that the error values are negligibly small which indicate that the Haar wavelet solution is very close to the 

exact solution. Thus the Haar wavelet method guarantees the necessary accuracy with a small number of grid 

points and a wide class of PDEs can be solved using this approach. This method takes care of boundary conditions 

automatically and hence it is the most convenient method for solving boundary value problems. Discontinuities in 

the non-homogeneous Burgers equation, it appears to our knowledge, has not been discussed so far. Such 

discontinuities which are observed by us are now reported. For linear initial condition, discontinuities are 

observed for < 0.0001  at 3t   which are shown in Figures 3-6. Similar behavior is seen in the case of 

periodic initial condition for < 0.2  at 0.04t  . The discontinuities observed may be attributed as shocks. 

Further study is going on. 
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